LF精煉過程、中間包和鑄坯內均存在少量高熔點的Al2O3夾雜物,由于鋼包內襯常為鎂質耐火材料,二者接觸時會直接生成MgO.Al2O3,Al2O3和MgO.Al2O3夾雜物易粘附在水口內壁,堵塞水口。
因此,對于硅脫氧耐磨板需要嚴格控制原輔料中鋁的來源,采用鎂質耐火材料和減小精煉渣中Al2O3含量。瓦屋頂光伏支架LF精煉渣堿度應該控制在2.0以下,好在1.5左右,這樣有利于降低夾雜物中的Al2O3含量改善線鱗缺陷。







陶瓷瓦光伏支架的熔覆層中含碳量的微小變化能顯著改變熔覆層的組織和性能,隨掃描速度的增大,熔覆層寬度、厚度、基底材料熔化深度、熱影響區深度均減小。隨著在陶瓷瓦光伏支架的熔覆層中加入Cr3C2量的提高,未熔Cr3C2以及凝固過程中形成的富鉻碳化物明顯增加,熔覆層與基體表面都出現了磨粒磨損特征的犁溝,涂層主要由未熔Cr3C2、桿狀或塊狀的富Cr碳化物及其間的細小枝晶組織組成,組成相主要為γ-Co、Cr7C3,Cr23C6和未熔Cr3C2。

綜上所述,在凍土地質條件下,考慮到經濟性和施工便利性,在采用必要的減樁長度來防止凍脹的前提下,PHC基礎是更合適的光伏支撐基礎[2]。以下以東北部的一個光伏項目為例,分析凍土地質條件下的情況PHC基礎的應力,以及避免其不均勻凍脹上升的措施。
在凍土地質條件下PHC基礎應力分析
受凍脹力影響,PHC主要在樁的長方向承擔荷載(PHC上部支架重量、部件重量和PHC自重等),凍土對PHC切向凍脹力,凍土層下的土體PHC錨固力。從應力分析的角度來看,在強凍脹土或特強凍脹土地區,當凍深較深時,完全借助PHC為了避免不均勻的凍脹脹上升是不經濟的。
